Computing Elementary Flux Modes in Genome-scale Metabolic Networks
نویسندگان
چکیده
Elementary flux mode analysis (EFM analysis) is an important method in the study of biochemical pathways. However, the computation of EFMs is limited to small and medium size metabolic networks due to a combinatorial explosion in their number in larger networks. Additionally, the existing tools to compute EFMs require to enumerate all EFMs before selecting those of interest. The method presented here extends EFM analysis to genome-scale models. Instead of computing the entire set of EFMs an optimization problem is used to determine a single EFM. Coupled with a genetic algorithm (GA) this allows to explore the solution space and determine specific EFMs of interest. Applied to a network in which the set of EFMs is known our method was able to find all EFMs in two cases and in another case almost the entire set before aborted. Furthermore, we determined the parts of three metabolic networks that can be used to produce particular amino acids and found that these parts correspond to significant portions of the entire networks. Availability: Source code and an executable are available upon request.
منابع مشابه
Can the whole be less than the sum of its parts? Pathway analysis in genome-scale metabolic networks using elementary flux patterns.
Elementary modes represent a valuable concept in the analysis of metabolic reaction networks. However, they can only be computed in medium-size systems, preventing application to genome-scale metabolic models. In consequence, the analysis is usually constrained to a specific part of the known metabolism, and the remaining system is modeled using abstractions like exchange fluxes and external sp...
متن کاملInterplay between Constraints, Objectives, and Optimality for Genome-Scale Stoichiometric Models
High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the ...
متن کاملAvoiding the Enumeration of Infeasible Elementary Flux Modes by Including Transcriptional Regulatory Rules in the Enumeration Process Saves Computational Costs
Despite the significant progress made in recent years, the computation of the complete set of elementary flux modes of large or even genome-scale metabolic networks is still impossible. We introduce a novel approach to speed up the calculation of elementary flux modes by including transcriptional regulatory information into the analysis of metabolic networks. Taking into account gene regulation...
متن کاملFast Flux Module Detection Using Matroid Theory
Flux balance analysis (FBA) is one of the most often applied methods on genome-scale metabolic networks. Although FBA uniquely determines the optimal yield, the pathway that achieves this is usually not unique. The analysis of the optimal-yield flux space has been an open challenge. Flux variability analysis is only capturing some properties of the flux space, while elementary mode analysis is ...
متن کاملComplete enumeration of elementary flux modes through scalable demand-based subnetwork definition
MOTIVATION Elementary flux mode analysis (EFMA) decomposes complex metabolic network models into tractable biochemical pathways, which have been used for rational design and analysis of metabolic and regulatory networks. However, application of EFMA has often been limited to targeted or simplified metabolic network representations due to computational demands of the method. RESULTS Division o...
متن کامل